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A method is presented that is capable of following discontinuities in the solution of hyper- 
bolic partial differential equations. At every time step for each cell in the neighborhood of the 
discontinuity, the fraction of the cell lying behind the discontinuity curve is updated. From 
this data the front is reconstructed. The method is applied to three scalar differential 
equations: inviscid Burgers’ equation, the Buckley-Leverett equation for immiscible porous 
flow, and the equation for two-phase miscible flow in a porous medium. 

1. INTRODUCTION 

Discontinuities in the solution of hyperbolic partial differential equations appear in 
many physical applications, e.g., gas dynamics, flame propagation, and petroleum 
reservoir simulation. Methods to follow these time-dependent fronts in two space 
dimensions have been described by Richtmyer and Morton [ 171 and more recently by 
Noh and Woodward [ 151, Chorin [3], Glimm et al. [ 111, and Hirt and Nichols [ 141. 
The last reference contains a review of several front tracking techniques. In [ 11, 171, 
the discontinuity curve is approximated by a number of points. The front is advanced 
in time by moving the points with the front speed, either in the direction normal to 
the front [ 171 or along the characteristics [ 111. Another way of representing the front 
is suggested in [3, 14, 151. For each mesh cell covering the domain of the solution, 
the fraction F of the cell that lies behind the front is stored. Fraction F satisfies 
0 <F < 1 and consequently, 1 -F is the fraction of the cell that lies ahead of the 
front. Using this information, an approximate line of discontinuity can be 
constructed. The fractions are transported by a velocity field u = (u,, u,,) determined 
by the position of the front and the particular hyperbolic equation to be solved. The 
fractions are moved in two steps: one in the x direction using u, and one in the y 
direction using u,,. At each step, the part of the volume behind the front in every cell 
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that flows over a grid line to an adjacent cell is determined. Then the fractional 
values are updated. The approach taken here is a development of these latter ideas 
presented in [3, 151. 

The front tracking method is applied here to the numerical solution of three 
examples of scalar hyperbolic partial differential equations (PDEs), 

u, + v * (q!-(u)) = 0, (1.1) 
with discontinuous initial data on the domain (x, y) E R = [0, 1 ] x [0, 11. The front 
speed is given by the Rankine-Hugoniot condition and the velocity field q = (qx, 9,). 
The three hyperbolic PDEs are inviscid Burgers’ equation, the Buckley-Leverett 
equation, and the equation for porous, two-phase miscible flow. 

(1) Inviscid Burgers’ equation 

ut + v * (fqd) = 0, q(x,y) = (1, 1). (1.2) 

(2) The Buckley-Leverett equation 

u, + v * W(u)) = 0, 

au/an = 0 on 6X2, the boundary of Q, u(t, 0,O) = 1, (1.3a) 

4 = -n(u) VP, v * G(u) VP) = g, aplan = 0 on cYR. (1.3b) 

The fractional flow functionf(u) and the total mobility A(u) are taken to be 

f(u) = u’/(u’ + a( 1 - U)2), aE (0, 11, l(u) = u2 + a(1 - U)‘. (1.3c) 

(3) The equation for porous, two-phase, miscible flow, 

u, + v * (qu) = 0, au/an = 0 on aR, up, 0,O) = 1. (1.4a) 

The value of q satisfies Eq. (1.3b) and A(u) has the definition 

A(u) = (u + p( 1 - u>>4, p> 0. (1.4b) 

The inital data for Burgers’ equation are such that the solution contains both 
shocks and rarefaction waves; see the numerical results in Section 4. The saturation u 
for the flow of two immiscible, incompressible fluids through a homogeneous porous 
medium satisfies the Buckley-Leverett equation if the effects of gravity and capillary 
pressure are negligible. The quantity p is the pressure and a is the viscosity ratio 
between the two phases. Then we have g&y) = 0 except for a source at (0,O) and a 
sink at (1, l), each of unit strength. In d = Q\(O, 0), (1, I)}, we have V . q = 0. 
Therefore, the solutions u of (1.3a) and (1.4a) satisfy 

24, + q * Vf(u) = 0 (1.5) 
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in fi, where f is defined by (1.3~) and f(u) = U, respectively. Equations (1.3) and 
(1.4) are of importance in the simulation of petroleum reservoirs, see Peaceman [ 161. 

The hyperbolic equations (1.2), (1.3a), and (1.4a) are solved by operator splitting. 
Glimm’s method or the upstream difference method combined with Godunov’s 
method is used for the integration of the continuous parts of the solution. The 
solution to the elliptic equation (1.3b) for the porous flow examples is obtained at 
each time step by a finite difference approximation. 

2. THE FRONT TRACKING METHOD 

Place a uniform square grid of mesh spacing h in the x and y directions over the 
domain $2 of interest. Suppose that a value of v is available everywhere in L?. For 
each mesh cell (i,j), define the value F, to be the fraction of the cell that is behind 
the front. The discussion is simplified if the region behind the front henceforth is iden- 
tified as the black fluid and the region ahead of the front is identified as the white 
fluid. 

At each time step, the fractions in the mesh cells are moved using u in two one- 
dimensional steps, first in the x direction and then in the y direction. A local approx- 
imation of the interface between black and white fluid is performed in each cell (i,j) 
for which 0 < F, < 1 before the fluid in the cell is moved in a coordinate direction. 
This approximation is based on F in the neighboring cells and is not necessary for the 
majority of the cells for which Fii = 0 or F, = 1. The interpretation of the front in the 
x direction may be different from that in the y direction. 

In order to construct a local front in a cell (i, j) for a step in the horizontal 
direction, it is sufficient to consider the three cases in Fig. 1. The conditions on F in 
the neighboring cells in each case are: 

Case 1 (Fig. 1.1). 

and 

F4 # 0 and F, = 0 

((F, # 0 and (F, # 0 or F, # 0)) or 

(F, # 0 and (F, # 0 or F, # 0))). 

Case 2 (Fig. 1.2). 

((F,#OandF,#O)orF,=F,=O) and F,>F,. 

Case 3 (Fig. 1.3). 

F4#0 and F,#O and F,=F3=F5=0. 

The other nine possible configurations satisfy conditions that are easily derived by 
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FIG. 1. Three different cases in the procedure for transportation of the fractional volumes. 

moving the triangle in Case 3 to the other three corners and by interchanging the role 
of black and white. If none of the cases above applies, then Case 1 is chosen if 
FQ > F, , and if F5 > F4, the opposite case is chosen. 

The slope of the interface is determined as follows: 

Case 1. The upper and lower edge, x, and xdr of the trapezoid are proportional to 
F, and F,, 

x,/xc, = (F,If’, )’ 5 2 E 10, 11. (2.1) 

If F, = F, = 0, then x,/xd = 1. Furthermore, x, and xd satisfy the area condition 

0.5h(x, + xd) = h*F,,. (2.2) 

If Eqs. (2.1) and (2.2) imply that x, > h (xd > h), then solve Eq. (2.2) for xd (x,) with 
X” = h (Xd = h). 

Case 2. This case is equivalent to Case 1 with F, and F, in Eq. (2.1) replaced by 
F4 and F,. 

Case 3. Let a right triangle T have its two perpendicular sides on the grid lines 
and the right angle at the lower left corner of the cell (i,j). Let x,- and y7. be the 
lengths of the sides in the x and y directions, respectively. Compute xr and y7 such 
that 

xTIYT = (F,IFJ, (2.3) 

0.5~~~~ = h*F,,. (2.4) 

If x, < h and y, < h, then take xd and y,, the left edge of the triangle in Fig. 1.3, to be 
xr and y,. Otherwise, determine T such that Eq. (2.3) is satisfied and the area of T 
inside the cell is h*F,. This polygonal area contains the black fluid. 

The value of z in Eqs. (2.1) and (2.3) is 0, 0.5, or 1.0 in the numerical examples. 
Noh and Woodward [ 151 allow only interfaces parallel to the grid. Chorin [3 1 
introduces black and white rectangles inside the mesh cells to increase the accuracy. 
With z = 0, the local front line in Cases 1 and 2 is parallel to the mesh. 

When the interface between the black and white fluid has been established, the 
fluids in a cell are advected with the velocity 0,(x, y). The time step taken at time t, 
to advance the front is k. 
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Case 1. Let u, and ud be the values of V, at t, along the upper and lower mesh 
line, respectively. Then 

x,(c, + k) = X&J + v,k, x,(t, + k) = x&J + v,k. 

If x,(t, + k) > h or xd(t,, + k) > h, then determine the volume of black fluid AFij that 
has entered the right cell and update F, and Fi,j+ I, 

F,(t, + k) = F,(t,) - AF,, Fi,j+ Ittn + k, = Fi,j+ lCtn) + AFij. 

Proceed in a similar manner if x,(t, + k) < 0 or x,(t, + k) < 0. If 
uI = OS(u, + UJ < 0, then the contribution to the left cell is -v,k. If Fi,j-, = 1 and 
uI > 0, then the cell (i,j) receives AFij = vI k from its left-hand neighbor. 

Case 2. Let uI and u, be the values of V, at the left and right boundaries of the 
cell. Depending on the signs of V[ and ur, the original trapezoid is stretched or 
contracted and advected. The parallel edges remain constant. Then the possible 
contributions to the cells (i,j- 1) and (i,j+ 1) are computed. 

Case 3. Stretch or contract the triangle with v, at the left edge and vd at the 
lower right corner. Then decide if any black fluid has moved into the left or right cell. 

For each cell, F, must fulfill 0 <F, < 1. Hence, if F,(t, + k) > 1, then 
Fij(fn + k) = 1, and if Fij(t, + k) < 0, then Fij(t,, + k) = 0. To prevent the black fluid 
in a cell from flowing in one direction into more than one neighboring cell, k must 
satisfy the restriction 

k < VI v I. (2.5) 

The domain $2 of the solution in the numerical experiments is [0, l] x [0, l] with 
Neumann boundary conditions or with the directional derivative au/as = 0 on X4 
s = x - y. The grid on 0 is augmented by extra rows and columns so that the area 
[A, 1 + h] x [AZ, 1 + h] is covered. When one sweep in a coordinate direction is 
completed, the values of F in the extra cells outside of 0 are determined by reflection. 
Thus, all cells in R have a left and right neighbor as required by the algorithm. 

In order to compute the solution of the differential equation using the information 
on the front available from the front tracking method, the position of the discon- 
tinuities on the grid lines must be calculated. If the front crosses a horizontal line 
with black fluid to the left and white fluid to the right, two possibilities are 
distinguished, see Fig. 2. 

FIG. 2. Two different cases for determination of the point of discontinuity on grid line j. 
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Case 1 (Fig. 2.1). P, = Fe = 0, Fk # 0, k = 1, 2,4, 5. The discontinuity point on 
line j is approximated by 

x = xi + 0.5h(F, + Fs). (2.6) 

Case 2 (Fig. 2.2). F, = 0, Fk # 0, k = 1, 2, 4, 5, 6. The approximation of the 
discontinuity point on line j is 

x = xi + 0.5h(F, + F5 + Fe). (2.7) 

By using Eq. (2.7), a mesh point lying behind the front in the coordinate direction 
will also do that in the other direction. When the order of black and white at the front 
is reversed the formulas (2.6) and (2.7) are modified correspondingly. 

The coordinates of the discontinuities and their character (black-left or black-right) 
are stored for each line in the horizontal and vertical directions in vectors for later 
use when the differential equation is solved. The coordinates are connected to form 
the front curve in the graphical output. Knowledge of the character of a discontinuity 
on a line simplifies the task of following its path in time. 

It is possible that, e.g., a previous shock wave is replaced by a rarefaction wave 
due to a reversal of the flow or, as in two of the examples, that an initial discon- 
tinuity develops into a rarefaction wave. Whether such a wave starts in a cell (i,j) or 
not is determined by the hyperbolic PDE and the normal to the constructed front line. 
The contributions to neighboring cells AFij are computed as before, but F, is held 
constant. 

Computational experience (cf. Fenimore [8]) indicates that the zone of cells at the 
front for which 0 < F, < 1 is seldom more than two cells wide. Thus, the number of 
front cells for which calculations are necessary at each time step is 0(1/h). The front 
tracking method requires extra memory to store the O(l/h2) components of Fij. This 
number could be reduced to 0( l/h) by storing the value F, and the indices i and j of 
only the cells in the neighborhood of the front at the cost of a more complicated 
program. Evidently the formulas (2.6) and (2.7) for computing the points of discon- 
tinuity on a grid line are at least O(h) accurate for exact values Fij. For straight lines, 
however, the error is sometimes proportional to h. Hence, the accuracy of Eqs. (2.6) 
and (2.7) is O(h). Fenimore [S] demonstrates that the magnitude of the errors 
introduced in F, by the method of Noh and Woodward [ 151 in a special case is 
0th). 

With a simplified procedure for computing the local interfaces, the method can be 

PU PU 

qx :c qY qY 
P u PU 

qx 

FIG. 3. The approximate values of u, p. and q are computed at mesh points and grid lines. 
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extended to problems in three spatial dimensions. The discontinuity point on a grid 
line is then determined by the values of F in the four surrounding rows of grid cubes. 

The approximate values of u and q in Eq. (l.l), rP and q”, are known at grid 
points and on grid lines as displayed in Fig. 3. For Eq. (1.1) the velocity field u for 
advection of the front cells is given by q and the Rankine-Hugoniot condition. In 
each of the three cases in Fig. 1, U, is computed as follows: 

Case 1 (Fig. 1.1). Let u,, and u1 be the values of un surrounding the closest 
discontinuity on the upper grid line. Furthermore, let q* be the value of qx on the 
upper edge of the cell (i,j). Then 

u, = 4*Uh) -.mo))lh - %I). (2.8) 

We determine ud in a similar way. 

Case 2 (Fig. 1.2). Let u,, and U, be the values of U” surrounding the closest 
discontinuity on the left grid line. Let q* be the value of qx on the lower edge of the 
cell. Then V, is given by the same expression as u, in Eq. (2.8). We calculate U, from 
a0 and ui on the right grid line and q*. 

Case 3 (Fig. 1.3). Case 3 is equivalent to Case 1. 

3. TIME-INTEGRATION OF THE DIFFERENTIAL EQUATIONS 

The values of p”, q” = (qz, qy), and u* at the points depicted in Fig. 3 are 
calculated by the following procedures: In the two-phase flow equations, p” satisfies a 
finite difference approximation of the elliptic equation (1.3b). The derivative 
a@(u) ap/iYx)/ax is replaced by 

(A i+I,Z,j(Pi+l,j-Pij)-‘i-,,*,j(Pij-Pi-,,j))l’*, (3.1) 

where Ai+ I/z,j = O.~(A(U~) + A(u;+ l,j)), or if u is discontinuous between xi and xi+, , 
then let u$ = max(z$, u!+,,~) and Ai+,,2,j =A(#$). This choice of u$ is particularly 
suitable here since a thin linger of the least viscous fluid with width less than h 
containing the point (i, j) will have influence on 1 and p. We define Ai-,,2,j in a 
similar manner and the counterpart of Eq. (3.1) in the y direction is derived 
analogously. The resulting system of linear equations is solved by the preconditioned 
conjugate gradient method, as described in Albright and Concus [ 11. The values of 
45: and q: are approximated by standard difference formulas. 

Assume that u” and q” are known at t, . At tn + , = t, + k, u”+’ is obtained in two 
steps by operator splitting of (1.5), see Richtmyer and Morton [ 171. First solve 

(3.2) 
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followed by 

PER LdTSTEDT 

(3.3) 

The algorithm for computing u ” “* from Eq. (3.2) in a sweep in the horizontal 
direction is: 

(i) Determine the old points of discontinuity on all the lines in the horizontal 
direction. 

(ii) Transport the black and white fluids using u, and the method described in 
the previous section. 

(iii) Determine the new points of discontinuity on all the lines in the horizontal 
direction. 

(iv) Compute the continuous parts of nntl” on each line by a temporal one- 
step method, taking both the old and new points of discontinuity into account. 

With u” + iI2 as input in Eq. (3.3), u”+’ is computed in a sweep in the vertical 
direction. In three space dimensions, an additional step in the z direction is taken. 

The last step above requires further comments. The methods chosen in the 
examples are: 

(1) the upstream difference method combined with Godunov’s method (see 
Richtmeyer and Morton [ 171, Colella [5]), and 

(2) a modified Glimm’s method (also termed piecewise sampling method, 
random choice method, uniform sampling method) without a staggered grid due to 
Colella [5]. 

The random choice method for the solution of the Buckley-Leverett equation (1.3) 
was first used by Concus and Proskurowski [7]. The upstream difference formula 
used here for advancing the solution of Eq. (1.1) one time step in the x direction is 

u;+ I’* = 24; - (k/h) q;- 1,2r,j(f(U;) -f(U;-r.j)), (3.4) 

where r = 1 (resp. I = -1) if q;1- ,,2,j and qF+,,2,j are both positive (resp. negative). If 
4i”- VW and qf+ ,,2,j have different signs, then $+ ‘I2 is computed with Godunov’s 
method. The upper bound for the step size k for stability in Eq. (3.4) and Godunov’s 
method is 

k < h/l d-‘(u)1 9 (3.5) 

and in Glimm’s method 

k < 0.5h/lqf’(u)l. (3.6) 

Upstream differencing and Godunov’s method are first-order accurate [ 171 and the 
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c ::“” 
1234567 

FIG. 4. A discontinuity moves on a grid line when time increases. A mesh point is marked by (I) 
and a discontinuity by (x). 

order of Glimm’s method approaches first order, Colella [4]. Equations (3.2) and 
(3.3) specify a first-order splitting scheme. 

Consider a part of a grid line in Fig. 4 with two discontinuities at t, between which 
the solution is continuous. A value U$ is extrapolated from u; and u,“, 

2.4:: = 2.44” + (u; - 24:). (3.7) 

The values uj’, i = l,..., 4, and UT are then used by one of the above methods to 
produce ur+“*, i = l,..., 5. Then uf+“‘, i = 6, 7 ,..., are determined by u;, i = 5, 6 ,.... 
The modified Glimm’s method does not always provide solution values at boundary 
points or mesh points close to a discontinuity. The missing values are calculated with 
Eq. (3.4). At a discontinuity point, q is assumed to have constant sign so that 
Eq. (3.4) can be used. For the equation 

24, + vu, = 0, v = const, 

computing u:+ “* by extrapolation (Eqs. (3.7) and (3.4)) is equivalent to following 
the characteristics, along which u is constant. If a rarefaction wave starts in a front 
cell, then the point of discontinuity in the cell is ignored. There has been no 
indication of instability in the front values in the numerical test runs. 

Let Q,(t) E Q be the set such that if (X,JJ) E Q,(t), then u(r, X, y) = 0. Moreover, 
let B,(t) be the set R, = a\~&,. The initial data for Eqs. (1.2-1.4) are such that 
J&(O) # 0. The hyperbolic PDEs have the following property: if U: = 0 and the point 
(i,j) is not reached by the front at tn+,,2, then u:’ “’ = 0. Hence, no computation is 
required to update many values of uij ‘+“* The set Q,(t) grows with the expansion of . 
the shock front. There is no wave interaction between the advancing front and the 
material ahead of the front. 

4. NUMERICAL RESULTS 

The numerical solutions to Eqs. (1.2)-(1.4) with discontinuous initial data 
obtained by the method described in the previous two sections are presented and 
discussed here. All the examples are solved on a square grid with h = l/40 and k 
fulfills Eq. (2.5) and Eq. (3.5) or (3.6). Glimm’s method was used for Eqs. (1.2), and 
the upstream difference method for Eqs. (1.3) and (1.4). In the figures, the 
development of X!:, the approximation of the contour of a,(&), is drawn for every 
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FIG. 5. Burgers’ equation, z = 0.0, k = 0.01, At = 20k. The spurious wrinkles at some of the corners 
are caused in part by the routine for constructing the front line. The best approximation in the corners is 
achieved with z = 0.0. 

example. The initial 0: = Q,(O) is in the lower left corner. The difference in time 
between the contours is At. 

The exact solution to Burgers’ equation (1.2) is also derived easily in two spatial 
dimensions. After a simple transformation of the independent variables, Eq. (1.2) 
becomes a one-dimensional problem with known solution. Recently, Eq. (1.2) with 
discontinous initial data has been solved numerically by Gropp [ 121 with a method 
based on mesh refinement. 

The initial data for Eq. (1.2) in the numerical experiments are ~(0, x, y) = 1, 
(x,Y) E Q,(O). Th e b oundary conditions are of Neumann type au/&r = 0 except for 
Fig. 6, where au/as = 0, s = x --y. Different random numbers in Glimm’s method are 
used in the two fractional steps Eqs. (3.2) and (3.3). In Figs. 5 and 6, the initial front 

FIG. 6. Burgers’ equation, z = 0.5, k = 0.01, Al = 20.k. 



FRONT TRACKING 221 

I 

FIG. 7. Burger’s equation, rarefaction wave, z = 0.5, k = 0.01, Ar = 15k. The initial configuration 
Q,(O) is the square in the lower left corner. 

line retains its shape where the line is straight and the corners are rounded slightly. 
Part of the rounding effect, at least initially, is caused by the technique for 
constructing front curves. The error in the speed of the flat parts is on the level of the 
round-off errors. The analytical solution satisfies u(t, x, y) = 1, (x, y) E Q,(t), t > 0, 
and the computed solution is U” = 1 in GT and u” = 0 in 0: = Q\fi;. The solution of 
the rarefaction wave example in Figs. 7 and 8 on x =y is compared with the 
analytical solution in Fig. 9. The agreement is very good. Another example with a 
rarefaction wave is displayed in Figs. 10 and 11. The original method by Noh and 
Woodward [ 151 was tested on the initial data of Fig. 5 but was found to be too inac- 
curate at the corners of the front. In the absence of round-off errors, Chorin’s method 
of determining the local front in [3] yields the exact answer for the problem in Fig. 5. 

FIG. 8. The contours of ~(1.5, x,y) for the problem in Fig. 7 are drawn for u = 0.1, 0.2, 0.3, 0.4 
going from the IeR to the right. 
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FIG. 9. The exact solution (-) on the diagonal x - y = 0 is compared with the computed values (0) 
and the computed front (---) in Fig. 8. 

FIG. 10. Burgers’ equation, rarefaction wave, z = 0.5, k = 0.01, At = 20k. The initial configuration 
Q,(O) is the square in the lower left corner. 

FIG. 11. The contours of u( 1.05, x, y) for the problem in Fig. 10 are plotted for u = 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7 going from the left to the right. The top of the front curve is rounded and is about 3 % 
slower than the exact solution. The exact u at the top is approximately 0.83. 
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The solution to the problem in Fig. 6 obtained with that method had oscillations in 
the front in the vicinity of the corners. 

Numerical solutions to the Buckley-Leverett equation (1.3) in two space 
dimensions have been obtained by a number of authors [ 1, 2, 9 - 11, 181. They use 
the same f(u) and n(u) as in Eq. (1.3c), although other choices are possible. In the 
five-spot oil flow test problem (Collins [6]), water is injected into the source at (0,O) 
and oil is recovered from the sink at (1, 1). We denote by u the saturation of water. A 
shock front, where u is discontinuous, propagates from (0,O) toward (1, 1). For 
certain values of a in Eq. (1.3c), the front is stable to small perturbations but for 
other values the front is unstable and fingering of the front occurs. Whether the front 
is stable or not depends on the mobility ratio M [6, 9, 10, 131. M has the definition 

hf = w%>/%>~ (41) 

where ub is the value of u immediately behind the front and U, is the value ahead of 
the front. In the examples u, = 0. The solution of the Riemann problem at the front 
yields 

and therefore, 

Ub = (a/( 1 + a)y, (4.2) 

A4 = 2( 1 - (a/( 1 + a))“2). (4.3) 

The front is stable if M < 1 and unstable if M > 1. 
The normal component of q at the front qn is continuous but the tangential 

component qt is discontinuous. When the fractions of black fluid at the front are 
transported in the horizontal direction by v,, only u,, the component normal to the 
front, actually moves the front curve. Even if V, and qt advect the fractions of black 

FIG. 12. The Buckley-Everett equation (Eqs. (1.3a) and (1.3b)), with d(u) = 1 and 01= 0.5, 
.z = 0.5, k = 0.005. Between the first eleven lines At = 40k, and between the last three lines At = 10k. 
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FIG. 13. The contours of ~(2.125, x, y) for the problem in Fig. 12 immediately before breakthrough 
are drawn for u = 0.9, 0.8, 0.7, 0.6 going from the left to the right. Breakthrough occurs at t = 2.13, 
about l-2% later than the analytical solution. When the difference in initial conditions has been taken 
into account, u is in good agreement with the saturation contours in [ 21. 

fluid, they have little effect on a moderately curved front and no effect on a straight 
front line. 

In Figs. 12 and 13, Eq. (1.3) is solved with L(u) = const = 1 for comparison with 
the exact solution in [2] for a = 0.5, ub = 0.577, M= 0.845. In this case, q is 
independent of t and is computed only initially. Q,(O) is a quarter of a circle and 
u(0, r) = 1 + ar + br2, ~(0, rO) = ub = 0.577, where r = (x2 + y*)“*. The front is 
stable for a = 0.5. The initial data for the example in Fig. 14 are computed starting 
from the same initial data as in Fig. 12. Then a small disturbance is created on the 
front. The perturbation disappears in accordance with theory. This is in contrast to 
the results with a = 0.1, ub = 0.302, A4 = 1.397. The initial data are prepared as 

FIG. 14. The Buckley-Leverett equation as in Eq. (1.3) with a = 0.5, z = 1.0, k = 0.005. Between 
the first six lines At = 40k, and between the last five lines At = 10 k. The initial perturbation disappears. 



FRONT TRACKING 225 

FIG. 15. The Buckley-Leverett equation as in Eq. (1.3) with a = 0.1, z = 0.5, k = 0.004. Between 
the first three lines At = 50 k and between the last two lines At = 32 k. The initial perturbation grows. 

above. A small perturbation develops into a finger in Figs. 15 and 16. The shock 
profiles are compared in Figs. 15 and 16 for two different values of z in Eqs. (2.1) 
and (2.3). The most significant difference is the shape of the linger when the front is 
close to breakthrough at (1,l). From an initially smooth front, however, no 
spontaneous formation of fingers has been observed. This is probably due to the fact 
that M is not sufficiently large and to the inaccuracy of the solution to the elliptic 
equation (1.3b) near the front. Note that M in Eq. (4.3) satisfies M E [2 - \/2, 2). In 
the last example another model for flow is used allowing a larger M. 

The equations of miscible flow (1.4) have been solved by Glimm’s method without 
front tracking in [IO] and by using a front tracking technique in [ 111. The initial 

1 

FIG. 16. For comparison, the problem in Fig. 15 is rerun with z = 1.0. The difference between the 
two solutions is not great considering the unstable nature of the problem. 
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FIG. 17. The equations for two-phase, miscible flow M = 2.0, k = 0.005, z = 1.0. In this case 
At = 40 k except for the last two lines, where At = 20 k. 

data here are such that ~(0, x,~) = 1, (x, y) E n,(O). It follows from Eq. (1.4) that 
u(t, x, y) = 1 when (x, y) E a,(t), t > 0. The mobility ratio is M = l//3”. Fig. 17 
displays the solution of Eq. (1.4) with M = 2. The front is unstable and a jhgering 
effect is clearly visible. The computed solution u” fulfills u” = 1 in Q: and u” = 0 in 
Q,“. (See also Fig. 18.) The solution of the same problem in [ 1 l] with the front 
tracking method described there was depicted as having a stable front curve and no 
fingers. 

The typical CPU time required by a FORTRAN code on a VAX-l l/780 under 
VMS to compute the results in Figs. 7, 16, and 17 is presented in Table I. 

FIG. 18. Here q (2.5, x, JJ) is displayed for the last profile in Fig. 17. 
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TABLE I 

Example 
Total 

CPU time 
CPU time 
per step (4 

Percentage of total CPU time 

(b) (cl (4 

Fig. 1 191 s 1.27 s 14.3 58.3 2.5 25.0 
Fig. 16 516s 4.13 s 3.1 16.7 63.6 16.0 
Fig. 17 2153 s 4.49 s 6.3 14.9 68.7 10.1 

No&. (a) Computation of points of discontinuity, front curve, and rarefaction squares. (b) 
Computation of F& (c) Computation of 4”. (d) Computation of u”. 

5. CONCLUSIONS 

The front tracking method described in Sections 2 and 3 has been tested on three 
scalar hyperbolic PDEs with discontinuous initial data. The numerical solution of 
inviscid Burgers’ equation agrees very well with the analytical solution for shock 
waves and rarefaction waves. The same holds true also for the Buckley-Leverett 
equation with a = 0.5 and A(u) = 1 in Eq. (1.3b), when compared with the 
analytically derived solution. When a small perturbation is introduced on the front 
curve in the general system (Eq. (1.3)), it grows in the unstable case, Q = 0.1, and 
disappears in the stable case, a = OS. Fingers develop spontaneously when the 
mobility ratio is unfavorable in the two-phase, miscible flow equation. The method is 
able to resolve and follow unstable irregularities in the interface between shocked and 
unshocked fluid. The computer time required for the front tracking is comparable to 
the time used for the solution of the differential equations. The properties of the 
method when applied to nonscalar conservation laws, such as the equations of 
gasdynamics, have not been tested or analyzed. 
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